
Further
Graphics

A Brief Introduction to
Computational Geometry

Alex Benton, University of Cambridge – alex@bentonian.com

Supported in part by Google UK, Ltd
1

Computational Geometry
● Polygons meshes are examples of

discrete (as opposed to continuous)
representation of geometry

• Many rendering systems limit themselves
to triangle meshes

• Many require that the mesh be manifold

● In a closed manifold polygon mesh:
• Exactly two triangles meet at each edge
• The faces meeting at each vertex belong to

a single, connected loop of faces

● In a manifold with boundary:
• At most two triangles meet at each edge
• The faces meeting at each vertex belong to

a single, connected strip of faces

Edge: Non-manifold vs manifold

Non-manifold vertex

Vertex: Good boundary vs bad

This slide draws much inspiration from Shirley and Marschner’s
Fundamentals of Computer Graphics, pp. 262-263

2

Terminology
● We say that a surface is oriented if:

a. the vertices of every face are stored in a fixed
order

b. if vertices i, j appear in both faces f1 and f2, then
the vertices appear in order i, j in one and j, i in
the other

● We say that a surface is embedded if,
informally, “nothing pokes through”:
a. No vertex, edge or face shares any point in space

with any other vertex, edge or face except where
dictated by the data structure of the polygon mesh

● A closed, embedded surface must separate
3-space into two parts: a bounded interior
and an unbounded exterior.

A cube with “anti-clockwise”
oriented faces

Klein bottle:
not an
embedded
surface.

Also, terrible
for holding
drinks.

This slide draws much inspiration from Hughes and Van Dam’s
Computer Graphics: Principles and Practice, pp. 637-642

3

Gaussian curvature on smooth surfaces
Informally speaking, the
curvature of a surface
expresses “how flat the
surface isn’t”.
● One can measure the

directions in which the
surface is curving most; these
are the directions of principal
curvature, k1 and k2.

● The product of k1 and k2 is the
scalar Gaussian curvature.

Image by Eric Gaba, from Wikipedia

4

Gaussian curvature on smooth surfaces
Formally, the Gaussian
curvature of a region on a
surface is the ratio between
the area of the surface of the
unit sphere swept out by the
normals of that region and
the area of the region itself.
The Gaussian curvature of a
point is the limit of this ratio
as the region tends to zero
area.

Area on the surface
Area of the projections
of the normals on the
unit sphere

aswept
as

0 on a plane

aswept
as

r-2 on a sphere of radius r
(please pretend that this is a sphere)

5

Gaussian curvature on discrete surfaces
On a discrete surface, normals do not vary smoothly: the
normal to a face is constant on the face, and at edges and
vertices the normal is—strictly speaking—undefined.
● Normals change instantaneously (as one's point of view travels

across an edge from one face to another) or not at all (as one's point
of view travels within a face.)

The Gaussian curvature of the surface of any polyhedral
mesh is zero everywhere except at the vertices, where it is
infinite.

6

Normal on a surface

Expressed as a limit,
The normal of surface S at point P is the limit of the
cross-product between two (non-collinear) vectors
from P to the set of points in S at a distance r from P
as r goes to zero. [Excluding orientation.]

7

Normal at a vertex

Using the limit definition, is the ‘normal’ to a
discrete surface necessarily a vector?
● The normal to the surface at any point on a face is a

constant vector.
● The ‘normal’ to the surface at any edge is an arc swept

out on a unit sphere between the two normals of the
two faces.

● The ‘normal’ to the surface at a vertex is a space swept
out on the unit sphere between the normals of all of the
adjacent faces.

8

Finding the normal at a vertex

Method 1: Take the
average of the normals
of surrounding polygons

Problem: splitting one
adjacent face into 10,000
shards would skew the
average

9

Finding the normal at a vertex

Method 2: Take the
weighted average of the
normals of surrounding
polygons, weighted by the
area of each face
● 2a: Weight each face

normal by the area of the
face divided by the total
number of vertices in the
face

Problem: Introducing new edges
into a neighboring face (and
thereby reducing its area) should
not change the normal.
Should making a face larger
affect the normal to the surface
near its corners?
● Argument for yes: If the vertices

interpolate the ‘true’ surface, then
stretching the surface at a
distance could still change the
local normals.

10

Finding the normal at a vertex

Method 3: Take the
weighted average of the
normals of surrounding
polygons, weighted by each
polygon’s face angle at the
vertex

Face angle: the angle α
formed at the vertex v by
the vectors to the next and
previous vertices in the
face F

Note: In this equation, arccos
implies a convex polygon. Why?

NF

11

Angle deficit – a better solution for
measuring discrete curvature
The angle deficit AD(v) of a vertex v is defined to be two π
minus the sum of the face angles α(F) of the adjacent faces

90˚90˚

90˚ AD(v) = 360 ˚ – 270 ˚ = 90 ˚

12

Angle deficit

High angle deficit Low angle deficit Negative angle deficit

13

Hmmm…

Angle deficit

14

Genus, Poincaré and the Euler Characteristic
● Formally, the genus g of a closed

surface is
...“a topologically invariant property of a

surface defined as the largest number
of nonintersecting simple closed
curves that can be drawn on the
surface without separating it.”

--mathworld.com
● Informally, it’s the number of

coffee cup handles in the surface.

Genus 0

Genus 1

15

Genus, Poincaré and the Euler Characteristic

Given a polyhedral surface S without border
where:
● V = the number of vertices of S,
● E = the number of edges between those vertices,
● F = the number of faces between those edges,
● χ is the Euler Characteristic of the surface,

the Poincaré Formula states that:

16

Genus, Poincaré and the Euler Characteristic

g = 0
E = 12
F = 6
V = 8
V-E+F = 2-2g = 2

g = 0
E = 15
F = 7
V = 10
V-E+F = 2-2g = 2

g = 1
E = 24
F = 12
V = 12
V-E+F = 2-2g = 0

4 faces

3 faces

17

The Euler Characteristic and angle deficit

Descartes’ Theorem of Total Angle Deficit states that
on a surface S with Euler characteristic χ, the sum of
the angle deficits of the vertices is 2πχ:

Cube:
● χ = 2-2g = 2
● AD(v) = π/2
● 8(π/2) = 4π = 2πχ

Tetrahedron:
● χ = 2-2g = 2
● AD(v) = π
● 4(π) = 4π = 2πχ

18

Great for…
● Collision detection between scene

elements
● Culling before rendering
● Accelerating ray-tracing, -marching

Speed things up!
Bounding volumes

A common optimization
method for ray-based rendering
is the use of bounding volumes.

Nested bounding volumes
allow the rapid culling of large
portions of geometry

● Test against the bounding volume
of the top of the scene graph and
then work down.

19

Popular acceleration structures:
Octrees

Split space into cells and
list in each cell every object
in the scene that overlaps
that cell.

● The ray can skip empty cells
● Requires preprocessing

stage, but can be partially
updated for moving scenes

● Popular for voxelized games
● The Octree data structure

generalizes to arbitrary nxnxn
rectangular volume
subdivision

20

The BSP tree pre-partitions the scene
into objects in front of, on, and behind
a tree of planes.
● This gives an ordering in which to test

scene objects against your ray
● When you fire a ray into the scene, you

test all near-side objects before testing
far-side objects.

Challenges:
● requires slow pre-processing step
● strongly favors static scenes
● choice of planes is hard to optimize

Popular acceleration structures:
BSP Trees

21

A B

C D E F

A

B

C
E

F
D

Popular acceleration structures:
kd-trees
The kd-tree is a simplification of the
BSP Tree data structure
● Space is recursively subdivided by

axis-aligned planes and points on either
side of each plane are separated in the
tree.

● The kd-tree has O(n log n) insertion
time (but this is very optimizable by
domain knowledge) and O(n2/3) search
time.

● kd-trees don’t suffer from the
mathematical slowdowns of BSPs
because their planes are always
axis-aligned.

Image from Wikipedia, bless their hearts.

22

Popular acceleration structures:
Bounding Interval Hierarchies

The Bounding Interval Hierarchy
subdivides space around the volumes
of objects and shrinks each volume
to remove unused space.

● Think of this as a “best-fit” kd-tree
● Can be built dynamically as each ray is

fired into the scene
● Retains implicit contents sorting, which

is nice for traversal Image from Wächter and Keller’s paper,
Instant Ray Tracing: The Bounding
Interval Hierarchy, Eurographics (2006)

23

Convex hull

The convex hull of a set of points is the unique surface
of least area which contains the set.
● If a set of infinite half-planes have a finite non-empty

intersection, then the surface of their intersection is a convex
polyhedron.

● If a polyhedron is convex then for any two faces A and B in
the polyhedron, all points in B which are not in A lie to the
same side of the plane containing A.

Every point on a convex hull has non-negative angle
deficit.
The faces of a convex hull are always convex.

24

Finding the convex hull of a set of points

Method 1: For every
triple of points in the set,
define a plane P. If all
other points in the set lie
to the same side of P
(dot-product test) then
add P to the hull; else
discard.

Problem 1: this works but
it’s O(n4).

25

Finding the convex hull of a set of points

Method 2:
● Initialize C with a tetrahedron from any four non-colinear points in

the set. Orient the faces of C by taking the dot product of the center
of each face with the average of the vertices of C.

● For each vertex v,
● For each face f of C,

● If the dot product of the normal of f with the vector from the center of f to v
is positive then v is ‘above’ f.

● If v is above f then delete f and update a (sorted) list of all new border
vertices.

● Create a new triangular face from v to each pair of border vertices.

Time complexity: O(n2)

26

Testing if a point is inside a convex hull

We can generalize Method 2 to test whether a
point is inside any convex polyhedron.
● For each face, test the dot product of the normal of

the face with a vector from the face to the point. If
the dot is ever positive, the point lies outside.

● The same logic applies if you’re storing normals at
vertices.

27

References
Voronoi diagrams
● M. de Berg, O. Cheong, M. van Kreveld, M. Overmars, “Computational

Geometry: Algorithms and Applications”, Springer-Verlag,
● http://www.cs.uu.nl/geobook/
● http://www.ics.uci.edu/~eppstein/junkyard/nn.html
● http://www.iquilezles.org/www/articles/voronoilines/voronoilines.htm

Gaussian Curvature
● http://en.wikipedia.org/wiki/Gaussian_curvature
● http://mathworld.wolfram.com/GaussianCurvature.html

The Poincaré Formula
● http://mathworld.wolfram.com/PoincareFormula.html

28

http://www.cs.uu.nl/geobook/
http://www.ics.uci.edu/~eppstein/junkyard/nn.html
http://www.iquilezles.org/www/articles/voronoilines/voronoilines.htm
http://en.wikipedia.org/wiki/Gaussian_curvature
http://mathworld.wolfram.com/GaussianCurvature.html
http://mathworld.wolfram.com/PoincareFormula.html

